# [스마트 커넥티드 월드 2018](https://smartconnected.world/)/[AI Expo Korea 2018](http://www.aiexpo.co.kr/page/sub1_1) # Python 기반 빅데이터 및 머신러닝 개발 실무 <table class="table table-striped"> <thead> <tr> <th scope="col">시간</th> <th scope="col">내용</th> </tr> </thead> <tbody> <tr> <td>10:00 – 11:50</td><td><strong><a href="http://aopt.biz/lecture/smartConnected2018.pdf">Session1. 빅데이터 및 머신러닝 개요</a></strong> <ul> <li>빅데이터 및 머신러닝</li> <li><span style="font-family:inherit;font-size:inherit;">머신러닝 기본 원리</span></li> <li>EDA(Exploratory Data Analysis)</li> <li>feature engineering</li> <li>시각화</li> <li>머신러닝 기본 개념들</li> <li>머신러닝 분류</li> <li>머신러닝 모형</li> </ul> </td></tr> <tr> <td>12:00 – 13:30</td> <td>점심</td> </tr> <tr> <td>13:30 &#8211; 14:20</td> <td><strong>Session2. Python 개발 환경 설정<br /> </strong></p> <ul> <li><a href="https://anaconda.org">anaconda</a> 설치</li> <li><a href="https://www.spyder-ide.org/">spyder</a> 소개</li> <li>jupyter notebook 소개</li> <li>jupyter notebook 기본 개념 : markdown과 cell</li> <li><a href="http://mdhub.io:8080/urls/mdhub.io/nbviewer/Okm?flush_cache=true" style="color:red;font-size:15px;">jupyter notebook 실습</a></li> <li><a href="https://nbviewer.jupyter.org/">nbviewer</a>, <a href="http://3months.tistory.com/12">NbViewer를 통해 Jupyter Notebook Share하기</a></li> <li><a href="http://mdhub.io:8080/">mdhub.io nbviewer</a></li> <li><a href="https://mdhub.io/view/2q4">mdhub.io의 nbviewer를 통해 Jupyter notebook 공유하기</a></li> </ul> </td> </tr> <tr> <td>14:30 &#8211; 15:20</td> <td><strong>Session 3. 기본 패키지 실습</strong></p> <ul> <li><a href="https://pandas.pydata.org/pandas-docs/stable/10min.html">pandas</a> 및 <a href="https://ko.wikipedia.org/wiki/SQL">SQL</a></li> <li><a href="https://docs.scipy.org/doc/numpy/user/quickstart.html">numpy</a></li> <li><a href="http://mdhub.io:8080/urls/mdhub.io/nbviewer/lmK?flush_cache=true" style="color:red;font-size:15px;">시각화 : matplotlib, seaborn, bokeh, vega 실습</a></li> </ul> </td> </tr> <tr> <td>15:30 – 16:20</td> <td> <strong>Session 4. <a href="https://www.kaggle.com/">kaggel.com</a>을 이용한 다양한 예제</strong></p> <ul> <li>kaggle.com 소개</li> <li>공개 dataset</li> <li>kernel 실습</li> <li>kaggle의 장단점</li> </ul> </td> </tr> <tr> <td>16:30 – 17:20</td> <td><strong>Session 5. keras 실습</strong></p> <ul> <li style="text-align:left;"><a href="http://mdhub.io:8080/url/aopt.biz/lecture/keras.ipynb?flush_cache=true" style="color:red;font-size:15px;">ann(MLP), cnn 실습</a></li> <li style="text-align:left;">decision tree 및 다양한 변형 tree들 소개</li> </ul> </td> </tr> <tr> <td>17:30 –18:00</td> <td> <b> 자유토론 및 Q&amp;A</b></td> </tr> </tbody> </table> > > > Copyright (c) 2018 Hugon Kim(Ph.D) [good47906@gmail.com](mailto:good47906@gmail.com) > >
MIP

optimal status

ppp

Try Python